
Stellar Core Data Flow
 @graydon_pub, Developer @stellarorg

Show me your flowcharts and conceal your
tables, and I shall continue to be mystified.

Show me your tables, and I won’t usually need
your flowcharts; they’ll be obvious.

Fred Brooks

Talk Overview

This is a talk about the data that stellar-core deals with.
It does not discuss SCP, Horizon, or applications built on Stellar.

It does not discuss cryptography, finance or trust.

It is to help you figure out
what is stored and transmitted where.

Talk overview

1. Review: replicated state machines

2. Data types

3. Data formats

4. Places data lives

5. Movement of data

6. Bonus: external access to data

1. Review: replicated state machines

stellar-core is a
replicated state machine

State machine

Pure function of current state + input

F(Staten, Inputn+1) (Staten+1, Outputn+1)

Deterministic

Same state + input always makes same next-state + output

Can replay any step, given state + input

State machine

We will not discuss the function F much.

Suffice to say it's "applying transactions."

The other 3 parts are data, which we'll talk about:

1. State

2. Input

3. Output

Replicas

Recall: stellar-core is intended as a replicated state machine

Meaning: keep multiple copies of state machine and its data

- On different physical computers

- Run at same time, in lock-step

- Run same function on same "input + state" data

- Produce same "output + next state" data

"lots of copies keeps stuff safe"

Replication is for
reliability, decentralization

ensures same current state and input on all replicas

Replicas are coordinated
by a consensus algorithm

this talk is not about SCP

stellar-core uses SCP for
replica consensus

State = Ledger

Input = Transactions

Output = History

F(Ledgern, Transactionsn+1) (Ledgern+1, Historyn+1)

In the stellar-core state machine:

1. Acquire consensus on state and input

2. Apply input to state

3. Emit output, advance to new state

Every stellar-core peer follows this cycle

(endless loop, every 5 seconds)

1. Acquire consensus on ledger and transactions

2. Apply transactions to ledger

3. Emit history, advance to new ledger

Every stellar-core peer follows this cycle

(endless loop, every 5 seconds)

2. Data Types

Recall: data of stellar-core state machine

1. Ledgers (state)

2. Transactions (input)

3. History (output)

Ledger

Recall: this is the state data

Description of how-things-are at the present moment

Set of 3 kinds of entries:

- Accounts

- Trustlines

- Offers

Transactions

Recall: this is the input data

Is truly data: encoded descriptions of actions-to-perform

Handful of possible actions on ledger entries:

- Create/modify/delete entry

- Transfer amount between entries

- Miscellaneous others (inflation, set options, etc.)

History

Recall: this is the output data

Log of changes during each state-transition:

- Transaction set that was used as input

- Success or failure of each transaction, and its effects

- Compact description of next state

3. Data Formats

Data in stellar-core takes 2 forms:

plus a few auxiliary TOML and JSON files

1. XDR

2. SQL

External Data Representation

Generic binary serialization format1

Internet standard2

Driven by plain-text schemas

XDR

1 Like ASN.1, Protocol Buffers, Thrift, Avro
2 RFC 4506 / STD 67

Structured Query Language

Generic relational database access format

International standard3

Implies: stellar-core always paired with a database4

SQL

3 ISO/IEC 9075
4 Currently support PostgreSQL and SQLite

Uses of XDR

All 3 kinds of data in stellar-core are expressed in XDR:

- Transactions (input) received in XDR

- Ledger (state) stored on disk in XDR

- History (output) emitted in XDR

Plus all SCP and P2P network messages

Uses of SQL

Mostly5 just the ledger (state)

Mostly6 just read / written while applying transactions

5 Some history (output) is also buffered there, on the way out
6 Consensus does some reading in order to validate potential input

Wait, isn't the ledger in XDR?
Yes: the ledger is stored twice

In XDR and SQL, simultaneously
for two good reasons—we'll get to them

4. Places data lives

Stellar-core deals with data in 4 places

1. XDR in flight (between replicas)

2. SQL tables in a relational database

3. XDR files on local disk

4. XDR files in a "history archive"

Peer-to-peer network between replicas

Messages flood to all peers

Mainly transactions & SCP messages

Held in memory until consensus

XDR in flight

Consulted during consensus

Modified during state-machine transition

Modified atomically: Ledgern Ledgern+1

Random-access, fine-grained

Fast: hundreds to thousands of updates per second

SQL tables in a relational database

So-called "buckets"

Store the ledger in canonical form

Duplicate of data stored in SQL tables

Needed for 2 operations7:

- Efficient, incremental cryptographic hashing

- Efficient, incremental storage and transmission of differences

XDR files on local disk

7 See https://github.com/stellar/stellar-core/blob/master/src/bucket/BucketList.h

Long-term, flat-file, mostly cold storage

User-defined backends8

Stores checkpoints: XDR buckets and XDR history logs

Mostly9 write-once, read-many

Used by peers to catch up to one another

XDR files in a "history archive"

8 Typically AWS S3, Google Cloud Storage, Azure Blob Storage, SCP/SFTP, etc.
9 A single JSON file is rewritten to point to the "most recent" checkpoint

Reiteration in case this was not clear

A stellar-core node usually requires two other storage facilities:

- A relational database10

- One or more history archives11

10 SQLite is bundled and may be sufficient for small networks; PostgreSQL is recommended.
11 At least configuring an archive to read from; writing to an archive is optional, but recommended.

5. Movement of data

Data moves in 5 interesting flows

1. History archives Peers "Catchup"

2. External clients Peers "Submission"

3. Peers Peers "Flooding"

4. Peers Databases and local files "Applying"

5. Peers History archives "Publishing"

Happens when a peer is new or out of sync

Downloads12 XDR history files from history archive

One of two operator-chosen modes, either:

- replays state-transitions in order, or

- snaps to most recent state13

Catchup

12 Archive-specific, configured by user. Usually HTTP GET or similar.
13 This mode only downloads differences, one of the two reasons for duplicating the ledger in buckets.

Happens when an external client has new transaction

Contacts peer through HTTP (likely via Horizon)

Sends XDR representation of transaction

Receives status code indicating "rejected" or "pending"

Submission

Happens continuously

Peers hold long-lived TCP connections to one another

All messages are XDR, repeated to all peers

Transactions: flood as they're submitted

SCP messages: a burst of activity every 5 seconds

Flooding

Happens when SCP decides on consensus state + input

About every 5 seconds

Transactions in memory applied to ledger in SQL database

Duplicate copies of changed ledger entries put in XDR buckets14

Transactions and results written to accumulating XDR checkpoint

Applying

14 Cryptographic hash of ledger is efficiently calculated here: the other reason for duplicating the ledger in
buckets.

Happens every 64 ledgers

About every 5 minutes

Uploads15 accumulated checkpoint to history archive

Includes 64 state-transitions worth of history, compressed

All transactions, results, and any new buckets16

Publishing

14 Archive-specific, configured by user. Usually HTTP PUT or similar.
15 Only sends buckets differing from previous checkpoints.

Most-complicated
diagram time!

6. Bonus: external access to data

It may seem a little odd that basic functions
like "catchup" go through history archives.

History archives serve several roles

Ensuring reliable backups are made

Minimizing risks of single-node failure

Controlling storage costs for largest data set (history)

Isolating catchup I/O load away from P2P flooding

Providing very simple external access to data

A moment about that last point

Stellar is intended as a broadly interoperable system

Simplicity, transparency, standardization are key

Want there to be zero barriers to "getting the data"

Even if consensus network is offline

Even if stuck behind a firewall

Even if polling via shell scripts and duct tape

Benefits of flat files

You do not need to "talk to" stellar-core to get data

Command-line tools can download from history archives

curl/wget usually fine

Reading/interpreting involves only gzip, JSON and XDR

stellar-core will dump an XDR file as plain text, offline

Decoding XDR is pretty straightforward anyways

Go forth and experiment!

XDR schemas are public17

Archives are just directories full of XDR files

If you want to see the transactions in ledger 0x3127:

/transactions/00/00/31/transactions-00003127.xdr.gz

17 See https://github.com/stellar/stellar-core/tree/master/src/xdr

Fini

